RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION EXAMEN DU BACCALAURÉAT SESSION 2020

Session principale

Épreuve : Mathématiques

Sciences Techniques

Durée: 3h

Coefficient de l'épreuve: 3

adadad

Le sujet comporte 4 pages numérotées de 1/4 à 4/4. La page 4/4 est à rendre avec la copie.

Exercice 1 (4 points)

On considère deux urnes U₁ et U₂ contenant des boules indiscernables au toucher.

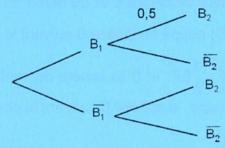
- L'urne U₁ contient trois boules blanches et deux boules noires.
- L'urne U₂ contient une boule blanche et deux boules noires.

Une épreuve consiste à tirer au hasard une boule de U_1 et la mettre dans U_2 , puis tirer au hasard une boule de U_2 et la mettre dans U_1 .

Soient les événements :

B₁: « La boule tirée de U₁ est blanche » et B₂: « La boule tirée de U₂ est blanche ».

- 1) a) Vérifier que P(B₂ / B₁)= 0,5.
 - b) Recopier et compléter l'arbre pondéré ci-dessous associé à cette épreuve.



- c) Montrer que $P(B_2) = 0,4$.
- d) Sachant que la boule tirée de l'urne U₂ est blanche, qu'elle est la probabilité que la boule tirée de U₁ soit blanche ?
- Soit l'événement E : « La boule tirée de U₁ est blanche et la boule tirée de U₂ est noire ».
 Vérifier que P(E) = 0,3.
- 3) Calculer la probabilité de l'événement F : « A la fin de l'épreuve, la répartition des boules dans les deux urnes reste inchangée ».
- 4) On désigne par X la variable aléatoire prenant pour valeur le nombre de boules noires restant dans l'urne U₂ à la fin de l'épreuve.
 - a) Déterminer la loi de probabilité de X.
 - b) Calculer l'espérance mathématique de X.

Exercice 2: (5 points)

Dans l'espace muni d'un repère orthonormé ($O, \vec{i}, \vec{j}, \vec{k}$), on considère les points

- 1) a) Montrer que $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$.
 - b) Montrer que l'aire du triangle ABC est égale à $\frac{\sqrt{3}}{2}$
- 2) a) Montrer que les points A, B, C et E sont non coplanaires.
 - b) Calculer le volume du tétraèdre EABC.
 - c) Montrer que la distance du point E au plan (ABC) est égale à $2\sqrt{3}$.
- 3) Soit Δ la droite passant par E et perpendiculaire au plan (ABC).
 - a) Vérifier que le système $\begin{cases} x=-1+\alpha\\ y=-1+\alpha \ ; \ \alpha\in IR \ , \ est \ une \ représentation paramétrique de \ \Delta.\\ z=\alpha \end{cases}$
 - b) Vérifier que le point I(1,1,2) appartient à Δ .
 - c) Montrer que le point I est le centre du cercle (Γ) circonscrit au triangle ABC.
- 4) Soit S l'ensemble des points M(x,y,z) de l'espace vérifiant : $x^2 + y^2 + z^2 + 2x + 2y 12 = 0$.
 - a) Montrer que S est la sphère de centre E et de rayon $\sqrt{14}$
 - b) Montrer que le plan (ABC) coupe la sphère S suivant le cercle Γ.
- 5) Soient F le point défini par $\overrightarrow{IF} = \frac{1}{2}\overrightarrow{EF}$ et S' la sphère de centre F et de rayon $\sqrt{14}$ Montrer que le plan (ABC) coupe la sphère S' suivant le cercle Γ

Exercice 3 (5 points)

- 1) Résoudre dans \mathbb{C} , l'équation, $z^2 \sqrt{2}(1+i)z 1 + i = 0$.
- 2) Soit dans \mathbb{C} , l'équation (E) : $z^3 \sqrt{2}(2+i)z^2 + (1+3i)z + \sqrt{2}(1-i) = 0$.
 - a) Vérifier que $\sqrt{2}$ est une solution de (E).
 - b) Montrer que pour tout nombre complexe z ,

$$z^3 - \sqrt{2}(2+i)z^2 + (1+3i)z + \sqrt{2}(1-i) = (z - \sqrt{2})(z^2 - \sqrt{2}(1+i)z^{-1} + i)$$

- c) Résoudre alors l'équation (E).
- 3) On considère, dans le plan rapporté à un repère orthonormé direct (O,u,v), les points

A, B d'affixes respectives :
$$z_A = 1 + \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$
 et $z_B = -1 + \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$.

a) Montrer que $z_B = i(\sqrt{2} - 1) z_A$.

- b) En déduire que le triangle OAB est rectangle en O.
- 4) a) Déterminer l'affixe du point I milieu du segment [AB] et le mettre sous forme exponentielle.
 - b) Construire le point I dans la figure1 de l'annexe ci jointe.
- 5) Soit (ζ) le cercle circonscrit au triangle OAB.
 - a) Montrer que I est le centre de (ζ) .
 - b) Montrer que la droite (AI) est parallèle à l'axe des abscisses.
 - c) Construire les points A et B dans la figure1 de l'annexe ci jointe.
- 6) La perpendiculaire à la droite (OI) et passant par le point I coupe la droite (O,u) en un point C. Déterminer l'affixe de C.

Exercice 4 (6 points)

Soit f la fonction définie sur IR par : $f(x) = e^{2x} - 2e^{x} + 2$.

On note (C) sa courbe représentative dans un repère orthonormé (O,i,j) du plan.

- 1) a) Calculer $\lim_{x\to -\infty} f(x)$. Interpréter graphiquement le résultat.
 - b) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat.
- 2) a) Montrer que pour tout réel x, $f'(x) = 2e^{x}(e^{x} 1)$.
 - b) Dresser le tableau de variations de f.
- 3) a) Montrer que pour tout réel x, f"(x) = 2e^x(2e^x 1) où f" désigne la fonction dérivée seconde de f.
 - b) En déduire que le point $A(-\ln 2, \frac{5}{4})$ est un point d'inflexion de la courbe (C).
- 4) On a tracé dans la figure 2 de l'annexe ci-jointe la tangente T à la courbe (C) au point A.
 - a) Vérifier que le point B(ln2,2) appartient à la courbe (C) et le construire dans la figure 2.
 - b) Construire la courbe (C) dans le repère (O, i, j).
- 5) Soit \mathcal{A} l'aire de la partie du plan limitée par la courbe (C), l'axe des abscisses et les droites d'équations x = 0 et $x = \ln 2$. Montrer que $\mathcal{A} = 2\ln 2 \frac{1}{2}$.
- 6) Soit g la restriction de f à l'intervalle[0, +∞[.
 - a) Montrer que g réalise une bijection de $[0, +\infty[$ sur $[1, +\infty[$.
 - b) Montrer que pour tout $x \in [1, +\infty[\ ,\ g^{-1}(x) = ln(1+\sqrt{x-1}\,)$.
 - c) Construire, dans le repère $(O, \overline{i}, \overline{j})$, la courbe (C') de la fonction réciproque g^{-1} de g.
 - d) En exploitant le graphique, calculer $\int_{1}^{2} \ln(1+\sqrt{x-1}) dx$.

	Section:Série:	Signatures des surveillants
	Nom et Prénom :	***********
	Date et lieu de naissance :	******************
*		

Épreuve: Mathématiques - Section : Sciences Techniques Session principale (2020) Annexe à rendre avec la copie

Figure 1

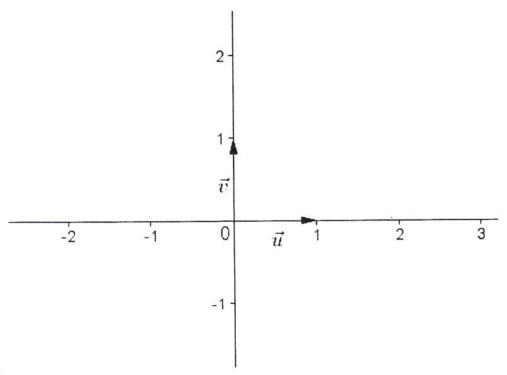


Figure 2

