RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION

EXAMEN DU BACCALAURÉAT

Session principale 2025

Épreuve: Mathématiques

Section: Mathématiques

Durée : 4h

Coefficient de l'épreuve : 4

N° d'inscription	

Le sujet comporte six pages numérotées de 1/6 à 6/6. Les pages 5/6 et 6/6 sont à rendre avec la copie.

Exercice 1 (5 points)

Dans la figure 1 de l'annexe jointe, ABCD est un losange de centre O tel que

 $\widehat{\left(\overline{\mathsf{DA}},\overline{\mathsf{DB}}\right)} \equiv \frac{\pi}{3} \, [2\pi]$, AOE est un triangle rectangle et isocèle en A de sens direct et l'est

le point d'intersection de (AD) et (OE).

Soit f la similitude directe qui transforme B en C et Den A.

- 1.a) Montrer que f(O) = O.
 - b) Montrer qu'une mesure de l'angle de f est $\frac{\pi}{2}$ et que son rapport est égal à $\sqrt{3}$.
- 2. On pose F = f(A).
 - a) Justifier que fof est une homothétie dont on déterminera le centre et le rapport.
 - b) Montrer que F est le symétrique de D par rapport à B.

On pose $g = S_{(AF)}$ of.

3.a) Montrer que g est une similitude indirecte et déterminer son rapport.

On note Ω le centre de g.

- b) Déterminer g(D) et g(A).
- c) En déduire que Ω est le symétrique de B par rapport à D . Construire alors Ω .
- 4.a) Montrer que la droite (OI) porte la bissectrice intérieure de l'angle $(\overline{O\Omega}, \overline{OA})$.
- b) Vérifier que le triangle $D\Omega A$ est isocèle en D et déduire que (AI) porte la bissectrice intérieure de l'angle $(\overrightarrow{AO}, \overrightarrow{A\Omega})$.
 - c) En déduire que (ΩI) est l'axe de g.
- 5. La droite (Ω I) coupe (AF) en J.
 - a) Montrer que g(I) = J. Déduire f(I).
 - b) Montrer que les points O, I, A et J appartiennent à un même cercle.

Exercice 2 (4.5 points)

On considère dans \mathbb{C} l'équation (E) : $2z^2 - (7 + i\sqrt{3})z + 9 + i\sqrt{3} = 0$.

- 1.a) Vérifier que $(1+3i\sqrt{3})^2 = -26+6i\sqrt{3}$.
 - b) Résoudre dans C l'équation (E).

Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

On a tracé dans la figure 2 de l'annexe jointe le cercle Γ de centre O et de rayon $\sqrt{3}$.

On considère les points A , B et C d'affixes respectives $z_A = -1$, $z_B = \frac{3}{2} - i \frac{\sqrt{3}}{2}$ et $z_C = 2 + i \sqrt{3}$.

- 2.a) Justifier que B∈ Γ.
 - b) Construire les points B et C.
- 3. On donne les points E et K d'affixes respectives $z_E = -\frac{1}{2} \frac{3i\sqrt{3}}{2}$ et $z_K = 4$.
 - a) Montrer que $\frac{z_E z_C}{z_A z_K} = \frac{1}{2} + i \frac{\sqrt{3}}{2}$.
 - b) Montrer qu'il existe un unique déplacement φ tel que $\varphi(K) = C$ et $\varphi(A) = E$.
 - c) Montrer que φ est une rotation d'angle $\frac{\pi}{3}$.
- 4.a) Montrer que l'expression complexe de φ est z' = $e^{i\frac{\pi}{3}}z i\sqrt{3}$.
 - b) Montrer que B est le centre de φ .
 - c) Construire le point E.
- 5. Soit F le point d'affixe $z_F = 1$.
 - a) Vérifier que $\overline{EF} = \frac{3}{5}\overline{EC}$.

On pose $F' = \varphi(F)$.

- b) Montrer que F'∈ [EC] et construire F'.
- c) Montrer que F'E=FA et FF'=FB.
- d) Vérifier que $\overrightarrow{AF} = \frac{2}{5}\overrightarrow{AK}$ et en déduire que $\overrightarrow{EF'} = \frac{2}{5}\overrightarrow{EC}$.
- e) Montrer que FA+FB+FC=EC.

Exercice 3 (4.5 points)

- I) On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E₁): 5u 29v = 16.
 - 1.a) Vérifier que le couple (9,1) est une solution de (E₁).
 - b) Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E₁).
 - 2. Soit dans \mathbb{Z} le système (S) $\begin{cases} x \equiv 2 \pmod{5} \\ x \equiv 18 \pmod{29} \end{cases}$

Montrer que x est solution de (S) si, et seulement si $x \in \left\{47+145k \; ; \; k \in \mathbb{Z}\right\}$.

11) 1.a) Recopier et compléter le tableau suivant :

Reste modulo 5 de x	0	1	2	3	4
Reste modulo 5 de x ³					

b) Résoudre dans \mathbb{Z} l'équation $x^3 \equiv 3 \pmod{5}$.

Soit dans \mathbb{Z} l'équation (E₂): $x^3 \equiv 3 \pmod{29}$.

- 2.a) Justifier que $3^{28} \equiv 1 \pmod{29}$.
 - b) Montrer que 3^{19} est une solution de (E_2) .
 - c) Vérifier que $3^6 \equiv 4 \pmod{29}$ et en déduire que $3^{19} \equiv 18 \pmod{29}$.
 - d) Justifier que 18 est un inverse de 39 modulo 29.
- 3. Soit x une solution de (E_2) .
 - a) Montrer que x et 29 sont premiers entre eux.
 - b) Montrer que $3^9 x \equiv 1 \pmod{29}$.
- 4. Montrer que x est solution de (E_2) si, et seulement si $x \equiv 18 \pmod{29}$.
- III) Soit $x \in \mathbb{Z}$.
 - 1.a) Montrer que $x^3 3 \equiv 0 \pmod{145}$ équivaut à $\begin{cases} x^3 \equiv 3 \pmod{5} \\ x^3 \equiv 3 \pmod{29} \end{cases}$
 - b) Montrer alors que $x^3 \equiv 3 \pmod{145}$ équivaut à $\begin{cases} x \equiv 2 \pmod{5} \\ x \equiv 18 \pmod{29} \end{cases}$
 - 2. Déterminer le plus petit entier a > 0 tel que $a^3 \equiv 3 \pmod{145}$.

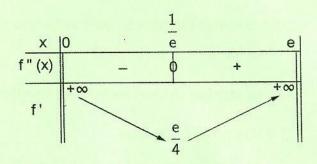
Exercice 4 (6 points)

Soit f la fonction définie sur [0,e[par
$$\begin{cases} f(x) = \frac{\ln x}{1 - \ln x} & \text{si } 0 < x < e, \\ f(0) = -1. \end{cases}$$

- I) On désigne par ζ la courbe représentative de f dans un repère orthonormé (O,\vec{i},\vec{j}) .
 - 1.Calculer $\lim_{x\to e^-} f(x)$ et interpréter graphiquement le résultat.
 - 2.a) Montrer que f est continue à droite en 0.
 - b) Montrer que $\lim_{x\to 0^+} \frac{f(x)+1}{x} = +\infty$ et interpréter graphiquement le résultat.
 - 3.a) Montrer que pour tout $x \in]0,e[,f'(x) = \frac{1}{x(1-\ln x)^2}$.
 - b) Dresser le tableau de variation de f.
 - 4. Soit I le point de ζ d'abscisse $\frac{1}{e}$.

On donne ci-contre le tableau de variation de f'.

- a) Justifier que $\, {\rm I} \,$ est un point d'inflexion de la courbe $\, \zeta \,$.
- b) Montrer qu'une équation de la tangente T à la courbe ζ au point I est $y = \frac{e}{4}x \frac{3}{4}$.
 - c) Etudier la position relative de ζ et T.



- Dans la figure 3 de l'annexe jointe, on a tracé la tangente T et la droite d'équation x = e. 5.a) Construire le point I.
 - b) Tracer la courbe ζ . (On précisera le point d'intersection de ζ et l'axe des abscisses).
- II) Soit la suite U définie sur $\mathbb N$ par $U_0 = \sqrt{e} 1$ et $U_n = \int_1^{\sqrt{e}} \left(f(x)\right)^n dx$, pour tout $n \ge 1$.
 - 1. Montrer que la suite U est décroissante et en déduire qu'elle est convergente.
 - 2.a) A l'aide d'une intégration par parties, montrer que pour tout $n \in \mathbb{N}^*$

$$\int_1^{\sqrt{e}} x \ f'(x) \big(f(x)\big)^n \ dx = \frac{\sqrt{e}}{n+1} - \frac{1}{n+1} U_{n+1}.$$

- b) Vérifier que pour tout $x \in]0,e[, [1+f(x)]^2 = xf'(x).$
- c) En déduire que pour tout $n \in \mathbb{N}^*$, $U_{n+2} + 2U_{n+1} + U_n = \frac{\sqrt{e}}{n+1} \frac{1}{n+1}U_{n+1}$.

4/6

d) On désigne par ℓ la limite de la suite U. Montrer que $\ell=0$.

	Section:Série:	Signatures des surveillants
	Nom et Prénom :	
	Date et lieu de naissance :	
9.		

Épreuve: Mathématiques - Section : Mathématiques Session principale (2025) Annexe à rendre avec la copie

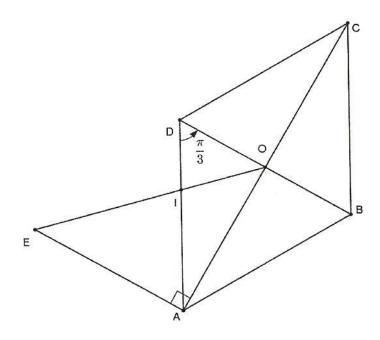


Figure 1

Figure 2

Ne rien écrire ici

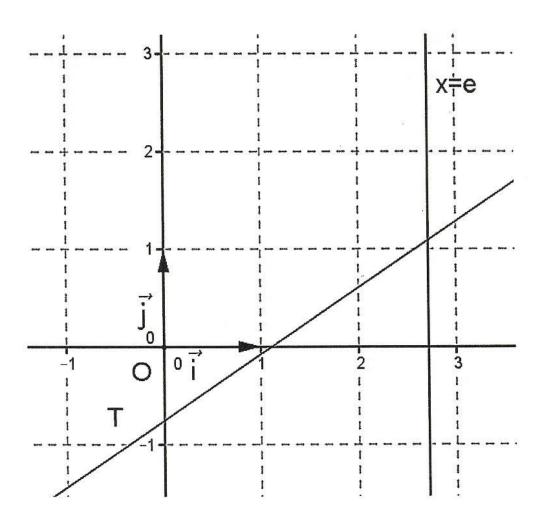


Figure 3