RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION

EXAMEN DU BACCALAURÉAT % Session de contrôle 2025

Épreuve : Mathématiques

Section: Sciences Techniques

Durée: 3h

Coefficient de l'épreuve: 3

Le sujet comporte 4 pages numérotées de 1/4 à 4/4. La page 4/4 est à compléter et à rendre avec la copie.

Exercice 1 : (4points)

Dans un laboratoire de recherche, un ingénieur souhaite optimiser le temps **T** en heures de charge d'une batterie en faisant varier la tension d'alimentation **V** en volts. Les résultats de l'expérience sont donnés dans le tableau ci-dessous :

Tension V (en volts)	10	12	14	16	18	20
Temps de charge T (en heures)	9.4	8.4	7.3	6.6	5.6	5.1

- 1) a) Construire, dans l'annexe ci-jointe, le nuage des points associé à la série (V,T).
 - b) Ce nuage permet-il d'envisager un ajustement affine entre V et T?
- Donner une équation cartésienne de la droite de régression de T en V (Les valeurs seront arrondies à 10⁻² près).
- 3) Estimer le temps de charge de cette batterie si la tension d'alimentation est de 17 volts.
- 4) On suppose que le temps de charge de cette batterie est une variable aléatoire $\mathcal T$ qui suit une loi uniforme sur l'intervalle $\begin{bmatrix} 5,10 \end{bmatrix}$.
 - a) Quelle est la probabilité que la batterie ait un temps de charge inférieur à 8 heures ?
 - b) Quelle est la probabilité que le temps de charge de la batterie soit compris entre 6 et 8 heures ?
 - c) On sait que la batterie est en charge depuis 6 heures, quelle est la probabilité que la durée totale de charge soit inférieure à 8 heures ?

Exercice 2:(5points)

- I) Soit dans \mathbb{C} l'équation : $(\mathbf{E}_{\theta}) : \mathbf{z}^2 2\mathbf{z} + 1 \mathbf{e}^{-2i\theta} = 0$ avec θ est un réel.
 - 1) Montrer que (E_{θ}) est équivalente à $(z-1)^2=(e^{-i\theta})^2$.
 - 2) Résoudre alors l'équation $(E_{_{\theta}})$ dans $\mathbb C$.
- Dans le plan complexe muni d'un repère orthonormé direct $(O, \mathbf{u}, \mathbf{v})$, on considère les points A, M et N d'affixes respectives : $\mathbf{z}_A = 1$, $\mathbf{z}_M = 1 + e^{-i\theta}$ et $\mathbf{z}_N = 1 e^{-i\theta}$ avec $\theta \in \left]0,\pi\right[$.
 - 1) a) Vérifier que le point A est le milieu du segment [MN].
 - b) Montrer que M et N sont deux points du cercle de centre A et de rayon 1.
 - c) Déduire que le triangle OMN est rectangle en O.

- 2) Soit M' le point d'affixe $\mathbf{z}_{\mathrm{M'}} = (1+\mathbf{i}\sqrt{3})\mathbf{z}_{\mathrm{M}}$.
 - a) Montrer que OM ' = 2 OM.
 - b) Montrer que MM' = $\sqrt{3}$ OM.
 - c) En déduire que le triangle OMM'est rectangle en M.
- 3) a) Montrer que $z_M = 2\cos(\frac{\theta}{2})e^{-i\frac{\theta}{2}}$.
 - b) Montrer que l'aire du triangle $OMM^{\, \text{!`}}$ est $\mathcal{A}=2\sqrt{3}\,\cos^2(\frac{\theta}{2})$.
 - c) Déterminer la valeur de θ pour que $\mathcal{A} = \frac{\sqrt{3}}{2}$.

Exercice 3:(5points)

L'espace est muni d'un repère orthonormé direct $(0,\vec{i}\,,\vec{j}\,,\vec{k})$.

On donne les points A(2,-2,1); B(1,1,-1); I(1,-1,1) et le vecteur $\vec{u}=2(\vec{i}+\vec{j}+\vec{k})$.

- 1) a) Donner les composantes des vecteurs \overrightarrow{IA} et \overrightarrow{IB} .
 - b) Vérifier que $\overrightarrow{IA} \wedge \overrightarrow{IB} = \overrightarrow{u}$.
 - c) Déduire l'aire du triangle IAB.
- 2) On désigne par :
 - P le plan qui passe par le point A et de vecteur normal \overrightarrow{IA} .
 - ${f Q}$ le plan qui passe par le point ${f B}$ et de vecteur normal $\overline{{f IB}}$.
 - ${f S}$ la sphère tangente au plan ${f Q}$ en ${f B}$ et qui coupe le plan ${f P}$ suivant le cercle (${f \zeta}$) de centre ${f A}$ et de rayon ${f r}$.
 - a) Montrer que la sphère S est de centre le point I.
 - b) Vérifier que le rayon ${\bf R}$ de la sphère ${\bf S}$ est égal à $2\sqrt{2}$
 - c) Montrer que $\mathbf{r} = \sqrt{6}$.
 - d) Donner une équation cartésienne de la sphère S.
- 3) a) Montrer que les plans P et Q sont sécants suivant une droite Δ de vecteur directeur $\overrightarrow{\mathbf{u}}$
 - b) Montrer que le point H(4,0,-2) appartient à la droite Δ .
 - c) Donner alors une représentation paramétrique de la droite Δ .

Exercice 4: (6points)

Soit f la fonction définie sur \mathbb{R} par : $f(x) = e^{2x} - e^x - x$. On désigne par (C_f) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1) a) Calculer $\lim_{x \to -\infty} f(x)$.
 - b) Montrer que la droite $\Delta : y = -x$ est une asymptote à (C_f) au voisinage $de(-\infty)$.
 - c) Etudier la position relative de la courbe $(C_{_f})$ et la droite Δ .
- 2) Montrer que $\lim_{x\to +\infty} f(x) = +\infty$ et que $\lim_{x\to +\infty} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement les résultats.
- 3) a) Montrer que pour tout $x \in \mathbb{R}$, on a : $f'(x) = (e^x 1)(2e^x + 1)$.
 - b) Dresser le tableau de variation de f .
 - c) En déduire que pour tout $x \in \mathbb{R}$, $f(x) \ge 0$.
- 4) Tracer, sur votre copie, la droite Δ et la courbe(C_f) dans le même repère (O, \vec{i}, \vec{j}) .
- 5) Pour λ un réel strictement négatif, on désigne par A_{λ} l'aire de la partie du plan limitée par la courbe (C_{ϵ}) , la droite Δ et les droites d'équations $x=\lambda$ et x=0.
 - a) Montrer que $A_{\lambda} = \frac{1}{2} (e^{\lambda} 1)^2$.
 - b) Calculer $\lim_{\lambda \to -\infty} A_{\lambda}$.
- 6) Pour α un réel strictement positif, on désigne par $(u_{_n})$ la suite définie sur $\mathbb N$ par :

$$\begin{cases} u_0 = \alpha \\ u_{n+1} = u_n + f(u_n), n \in \mathbb{N} \end{cases}$$

- a) Montrer que la suite (u_n) est croissante.
- b) Montrer que pour tout $n \in \mathbb{N}$, on a $u_{n+1} \ge u_n + f(\alpha)$.
- c) Montrer par récurrence que pour tout $n\in\mathbb{N}$, on a $\ u_{_n}\geq\alpha+nf(\alpha)$.
- d) Déterminer alors $\underset{n\rightarrow +\infty}{\lim}\,u_{_{n}}$.

	Section :	Signatures des surveillants
	Nom et Prénom :	
	Date et lieu de naissance :	****************
×		

Épreuve: Mathématiques - Section : Sciences Techniques Session de contrôle (2025) Annexe à rendre avec la copie

